

No Clean Liquid Flux Dispensing Pen Chemtools Pty Ltd

Chemwatch: **16-86124**Version No: **2.1**

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Chemwatch Hazard Alert Code: 3

Issue Date: **08/08/2023** Print Date: **08/08/2023** S.GHS.AUS/NZ.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	No Clean Liquid Flux Dispensing Pen
Chemical Name	Not Applicable
Proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains isopropanol)
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Chemtools Pty Ltd	Chemtools Pty Ltd
Address	Unit 2, 14 - 16 Lee Holm Road St Marys NSW 2760 Australia	15/62 Factory Road Belfast Christchurch 8051 New Zealand
Telephone	1300 738 250, +61 2 9833 9766	+64 9 940 2745
Fax	+61 2 9623 3670	+61 2 9623 3670
Website	www.chemtools.com.au	www.chemtools.co.nz
Email	sales@chemtools.com.au	sales@chemtools.com.au

Emergency telephone number

Association / Organisation	Poisons Information Centre	National Poisons Centre
Emergency telephone numbers	13 11 26	0800 764 766
Other emergency telephone numbers	Not Available	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable
Classification ^[1]	Flammable Liquids Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Version No: 2.1

No Clean Liquid Flux Dispensing Pen

Issue Date: 08/08/2023 Print Date: 08/08/2023

Hazard pictogram(s)

Signal word

Hazard statement(s)

AUH019	May form explosive peroxides.
H225	Highly flammable liquid and vapour.
H319	Causes serious eye irritation.
H336	May cause drowsiness or dizziness.

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P271	Use only outdoors or in a well-ventilated area.
P240	Ground and bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use non-sparking tools.
P243	Take action to prevent static discharges.
P261	Avoid breathing mist/vapours/spray.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
P337+P313	If eye irritation persists: Get medical advice/attention.
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

NFPA 704 diamond

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification ^[1]	Flammable Liquids Category 2, Aspiration Hazard Category 1, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI
Determined by Chemwatch using GHS/HSNO criteria	3.1B, 6.1E (aspiration), 6.4A, 6.5B (contact)

Version No: 2.1

Issue Date: **08/08/2023**Print Date: **08/08/2023**

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H225	Highly flammable liquid and vapour.
H304	May be fatal if swallowed and enters airways.
H317	May cause an allergic skin reaction.
H319	Causes serious eye irritation.

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P233	Keep container tightly closed.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P240	Ground and bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use non-sparking tools.
P243	Take action to prevent static discharges.
P261	Avoid breathing mist/vapours/spray.
P264	Wash all exposed external body areas thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.
P331	Do NOT induce vomiting.
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.
P302+P352	IF ON SKIN: Wash with plenty of water.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

Page 4 of 19

Part Number: No Clean Liquid Flux Dispensing Pen
Version No: 2.1

Issue Date: **08/08/2023**Print Date: **08/08/2023**

CAS No	%[weight]	Name	
67-63-0	>90	isopropanol	
64741-65-7.	<3	naphtha petroleum, heavy alkylate	
110-15-6	<1.1	succinic acid	
8050-09-7	<1	<u>rosin-colophony</u>	
Legend:	Legend: 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description of first aid m	easures
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For acute or short term repeated exposures to isopropanol:

- Rapid onset respiratory depression and hypotension indicates serious ingestions that require careful cardiac and respiratory monitoring together with immediate intravenous access.
- Rapid absorption precludes the usefulness of emesis or lavage 2 hours post-ingestion. Activated charcoal and cathartics are not clinically useful. Ipecac is most useful when given 30 mins. post-ingestion.
- ► There are no antidotes
- ▶ Management is supportive. Treat hypotension with fluids followed by vasopressors.
- ▶ Watch closely, within the first few hours for respiratory depression; follow arterial blood gases and tidal volumes.
- Ice water lavage and serial haemoglobin levels are indicated for those patients with evidence of gastrointestinal bleeding.

SECTION 5 Firefighting measures

Extinguishing media

- Alcohol stable foam.
- ► Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Version No: 2.1

Issue Date: **08/08/2023**Print Date: **08/08/2023**

Special hazards arising from the substrate or mixture

Fire Incompatibility

 Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- ► Consider evacuation (or protect in place).
- Fire Fighting Fight fire from a safe distance, with adequate cover.
 - If safe, switch off electrical equipment until vapour fire hazard removed.
 - Use water delivered as a fine spray to control the fire and cool adjacent area.
 - Avoid spraying water onto liquid pools.
 - Do not approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.

Eiro/Evalosion Hozard

- Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat, flame and/or oxidisers.
- Vapour may travel a considerable distance to source of ignition.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Fire/Explosion Hazard

Combustion products include:

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

WARNING: Long standing in contact with air and light may result in the formation

of potentially explosive peroxides.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Methods and material for	containment and cleaning up
Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling.

Absorb remaining product with sand, earth or vermiculite.
 Collect solid residues and seal in labelled drums for disposal.

If contamination of drains or waterways occurs, advise emergency services.

▶ Wash area and prevent runoff into drains.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Version No: 2.1

Page 6 of 19

No Clean Liquid Flux Dispensing Pen

Issue Date: 08/08/2023 Print Date: 08/08/2023

Precautions for safe handling

Safe handling

Other information

Containers, even those that have been emptied, may contain explosive vapours.

- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of exposure occurs.
- ► Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke.
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets.
- Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- ▶ Keep containers securely sealed. Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

▶ Store in original containers in approved flame-proof area.

- ▶ No smoking, naked lights, heat or ignition sources.
- DO NOT store in pits, depression, basement or areas where vapours may be trapped.
- Keep containers securely sealed.
- ▶ Store away from incompatible materials in a cool, dry well ventilated area.
- ▶ Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.
- Tank storage: Tanks must be specifically designed for use with this product. Bulk storage tanks should be diked (bunded). Locate tanks away from heat and other sources of ignition. Cleaning, inspection and maintenance of storage tanks is a specialist operation, which requires the implementation of strict procedures and precautions.
- Keep in a cool place. Electrostatic charges will be generated during pumping. Electrostatic discharge may cause fire. Ensure electrical continuity by bonding and grounding (earthing) all equipment to reduce the risk. The vapours in the head space of the storage vessel may lie in the flammable/explosive range and hence may be flammable.
- For containers, or container linings use mild steel, stainless steel. Examples of suitable materials are: high density polyethylene (HDPE), polypropylene (PP), and Viton (FMK), which have been specifically tested for compatibility with this product.
- ▶ For container linings, use amine-adduct cured epoxy paint.
- ▶ For seals and gaskets use: graphite, PTFE, Viton A, Viton B.
- Unsuitable material: Some synthetic materials may be unsuitable for containers or container linings depending on the material specification and intended use. Examples of materials to avoid are: natural rubber (NR), nitrile rubber (NBR), ethylene propylene rubber (EPDM), polymethyl methacrylate (PMMA), polystyrene, polyvinyl chloride (PVC), polyisobutylene. However, some may be suitable for glove materials.
- Do not cut, drill, grind, weld or perform similar operations on or near containers. Containers, even those that have been emptied, can contain explosive vapours.

Conditions for safe storage, including any incompatibilities

► DO NOT use aluminium or galvanised containers

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Suitable container

Isopropanol (syn: isopropyl alcohol, IPA):

- forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones especially methyl ethyl ketone (MEK, 2-butanone) will accelerate the rate of peroxidation
- reacts violently with strong oxidisers, powdered aluminium (exothermic), crotonaldehyde, diethyl aluminium bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ ambient temperature), chromium trioxide (ignition), potassium-tert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminium

Continued...

Chemwatch: **16-86124** Page **7** of **19**

Part Number: Version No: 2.1

No Clean Liquid Flux Dispensing Pen

Issue Date: **08/08/2023**Print Date: **08/08/2023**

triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/ incandescence), triisobutyl aluminium

- reacts with phosphorus trichloride forming hydrogen chloride gas
- reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines, aluminium isopropoxide, isocyanates, acetaldehyde, barium perchlorate (forms highly explosive perchloric ester compound), benzoyl peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion), hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminium hydride, lithium tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium, trinitromethane
- ▶ attacks some plastics, rubber and coatings
- reacts with metallic aluminium at high temperature
- may generate electrostatic charges

Alcohols

- are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen
- react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium
- ▶ should not be heated above 49 deg. C. when in contact with aluminium equipment

Secondary alcohols and some branched primary alcohols may produce potentially explosive peroxides after exposure to light and/ or heat.

- X Must not be stored together
- May be stored together with specific preventions
- + May be stored together

Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	isopropanol	Isopropyl alcohol	400 ppm / 983 mg/m3	1230 mg/m3 / 500 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	isopropanol	Isopropyl alcohol	400 ppm / 983 mg/m3	1230 mg/m3 / 500 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	rosin- colophony	Rosin core solder thermal decomposition products as resin acids (colophony)	Not Available	Not Available	Not Available	(dsen) - Dermal sensitiser (rsen) - Respiratory sensitiser

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
isopropanol	400 ppm	2000* ppm	12000** ppm
succinic acid	6.8 mg/m3	75 mg/m3	450 mg/m3
rosin-colophony	72 mg/m3	790 mg/m3	1,500 mg/m3

Ingredient	Original IDLH	Revised IDLH
isopropanol	2,000 ppm	Not Available
naphtha petroleum, heavy alkylate	Not Available	Not Available
succinic acid	Not Available	Not Available
rosin-colophony	Not Available	Not Available

Version No: 2.1

Page 8 of 19

No Clean Liquid Flux Dispensing Pen

Issue Date: **08/08/2023**Print Date: **08/08/2023**

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit		
succinic acid	E	≤ 0.01 mg/m³		
Notes:	potency and the adverse health outcomes associated	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance.
- · Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures.
- Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus)

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- ▶ Chemical goggles. Whenever there is a danger of the material coming in contact with the eyes; goggles must be properly

Version No: 2.1

No Clean Liquid Flux Dispensing Pen

Page 9 of 19

Issue Date: **08/08/2023**Print Date: **08/08/2023**

fitted. [AS/NZS 1337.1, EN166 or national equivalent]

- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

Hands/feet protection

See Hand protection below

► Elbow length PVC gloves

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

Other protection

- Overalls.
- PVC Apron.PVC protective suit may be required if exposure severe.
- ► Evewash unit.
- ▶ Ensure there is ready access to a safety shower.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the **computer-generated** selection:

No Clean Liquid Flux Dispensing Pen

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Version No: 2.1

Page 10 of 19

No Clean Liquid Flux Dispensing Pen

Issue Date: 08/08/2023 Print Date: 08/08/2023

Material	СРІ
NEOPRENE	A
NITRILE	A
NITRILE+PVC	A
PE/EVAL/PE	А
PVC	В
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	Air-line*	A-2 P2	A-PAPR-2 P2 ^
up to 20 x ES	-	A-3 P2	-
20+ x ES	-	Air-line**	-

^{* -} Continuous-flow; ** - Continuous-flow or positive pressure demand ^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- ► Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Colourless to light yellow highly flammable liquid with alcohol - like odour; partially miscible with water. Colourless		
Physical state	Liquid	Relative density (Water = 1)	0.78-0.82
Odour	Characteristic, alcohol - like Partition coefficient n-octanol / water		Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	5.8 - 6.3	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt) Not Available	
Initial boiling point and boiling range (°C)	82.2	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	<10 CC	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available Volatile Component (%vol) Not Avail		Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	>1	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7	
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. 	

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Version No: 2.1

Page 11 of 19

No Clean Liquid Flux Dispensing Pen

Issue Date: **08/08/2023**Print Date: **08/08/2023**

Possibility of hazardous reactions

Conditions to avoid See section 7

Incompatible materials See section 7

Hazardous decomposition products

See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	There is strong evidence to suggest that this material can cause, if inhaled once, very serious, irreversible damage of organs. The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.		
Ingestion	There is strong evidence to suggest that this material can cause, if swallowed once, very serious, irreversible damage of organs. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Accidental ingestion of the material may be damaging to the health of the individual.		
Skin Contact	There is strong evidence to suggest that this material, on a single contact with skin, can cause very serious, irreversible damage of organs. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. There is some evidence to suggest that the material may cause mild but significant inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.		
Eye	This material can cause eye irritation and damage in some persons.		
Chronic	Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Long term, or repeated exposure of isopropanol may cause inco-ordination and tiredness. Repeated inhalation exposure to isopropanol may produce sleepiness, inco-ordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in adult animals. Isopropanol does not cause genetic damage. There are inconclusive reports of human sensitisation from skin contacts with isopropanol. Chronic alcoholics are more tolerant of the whole-body effects of isopropanol. Animal testing showed the chronic exposure did not produce reproductive effects. NOTE: Commercial isopropanol does not contain "isopropyl oil", which caused an excess incidence of sinus and throat cancers in isoproanol production workers in the past. "Isopropyl oil" is no longer formed during production of isopropanol.		

No Clean Liquid Flux Dispensing Pen	TOXICITY	IRRITATION
	Not Available	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 12800 mg/kg ^[2]	Eye (rabbit): 10 mg - moderate
isopropanol	Inhalation(Mouse) LC50; 53 mg/L4h ^[2]	Eye (rabbit): 100 mg - SEVERE
	Oral (Mouse) LD50; 3600 mg/kg ^[2]	Eye (rabbit): 100mg/24hr-moderate
		Skin (rabbit): 500 mg - mild

Page 12 of 19

Part Number: Version No: **2.1**

No Clean Liquid Flux Dispensing Pen

Issue Date: **08/08/2023**Print Date: **08/08/2023**

	TOXICITY	IRRITATION	
naphtha petroleum, heavy	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Not Available	
alkylate	Inhalation(Rat) LC50: >5.04 mg/l4h ^[2]		
	Oral (Rat) LD50: >7000 mg/kg ^[2]		
succinic acid	TOXICITY	IRRITATION	
	Oral (Rat) LD50: 2260 mg/kg ^[2]	Eyes (rabbit) 1.179mg Draize - SEVERE	
rosin-colophony	TOXICITY	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50: >1000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

ISOPROPANOL

Isopropanol is irritating to the eyes, nose and throat but generally not to the skin. Prolonged high dose exposure may also produce depression of the central nervous system and drowsiness. Few have reported skin irritation. It can be absorbed from the skin or when inhaled. Intentional swallowing is common particularly among alcoholics or suicide victims and also leads to fainting, breathing difficulty, nausea, vomiting and headache. In the absence of unconsciousness, recovery usually occurred. Repeated doses may damage the kidneys. A decrease in the frequency of mating has been found in among animals, and newborns have been found to have a greater incidence of low birth weight. Tumours of the testes have been observed in the male rat. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Most Low Boiling Point Naphthas (LBPNs) have low actute toxicity to oral, dermal and inhalation routes of exposure, and mild to moderate skin and eye irritating effects. However, some heavier 'cracked' LBPNs (LKBPNs with greater olefinic content) have been found to be more irritating to the skin and eyes compared to non-cracked LBPNs.

LBPNs are not known to be sensitising to the skin.

Animal studies examined the effects of short-term and longer-term exposure to LBPNs through inhalation or oral routes. In male rats specifically, exposure to LBPNs resulted in kidney-related issues like increased kidney weight, kidney lesions, and hyaline droplet formation. However, the same effects were not seen in female rats, mice, or humans due to a mechanism of action involving a particular enzyme only found in male rats. Limited studies found that exposure through inhalation caused an increase in liver weight in both male and female rats. Dermal exposure to one specific LBPN (light cracked naphtha) resulted in skin irritation and changes at low doses in rats. Few studies were available regarding the chronic toxicity of LBPNs, but one study exposed mice and rats to unleaded gasoline (containing 2% benzene) and found ocular and kidney effects at concentrations of 200 mg/m3 and 6170 mg/m3, respectively.

Testing of LBPN genetic effects have shown mixed results when performed using in vitro studies. In vivo studies of LBPNs showed no negative outcomes. Some LBPNS have been shown to cause unusual chromosome formation. Testing of genotoxicity of unleaded gasoline (containing 2% benzene) found that unusual DNA synthesis was induced in mice via oral exposure. Similarly, unleaded gasoline with 2% benzene content resulted in in replicative DNA synthesis in rat kidney cells via oral and inhalation exposures. While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be disregarded based on the mixed in vitro genotoxicity results.

Limited evidence exists demonstrating the carcinogenicity of skin and blood following exposure to LBPNs. The published studies studfying the incidence of cancer due to LBPNs had several limitations, including a lack of exposure data and the inability to definitively exclude the exposure effects of gasoline combustion products from the effects of gasoline itself. Only unleaded gasoline has been examined for its carcinogenic potential in inhalation studies among LBPN substances. One such study foudn that inhalaiton of exposure of unleaded gasoline (2% benzene) resulted in promotion of liver tumours in female mice at an dosage of 6170 mg/m3 over 2 years, but did not initiate tumour formation. Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 carinogens (benzene content = 0.1% by weight). THe IARC has classified gasoline as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in petroleum refining" as Group 2A carcinogens (probably carcinogenic to humans). Induction of both benign and malignant tumours has been found following dermal exposure to mice to heavy catalytic cracked naphtha, light catalytic cracked naphtha, light straight-run naphtha and naphtha. On the other hand, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha or unleaded gasoline

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents. However, developmental toxicity was observed for a few naphthas. Decreased foetus body weight and an increased incidence of bone malformation were observed when female rats were exposed to light aromatized solvent naphtha at 1250mg/kg bodyweight. Another study found that pregnant rats exposed to hydrotreated heavy naphtha (~4500 mg/kg bodyweight) via inhalation birth offspring with greater birth weights, and decreased cognitive and memory ability. For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg bodyweight on gestational day 13.

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the

NAPHTHA PETROLEUM, HEAVY ALKYLATE

Version No: 2.1

Page 13 of 19

No Clean Liquid Flux Dispensing Pen

Issue Date: **08/08/2023**Print Date: **08/08/2023**

carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.

Petroleum contains aromatic (benzene, toluene, ethyl benzene, napthalene) and aliphatic hydrocarbons (n-hexane), which can result in many detrimental health effects, including, cancer, tumour formation, hearing loss, and nervous system toxicity. Animal testing shows breathing in petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans. Similarly, exposure to gasoline over a lifetime can cause kidney cancer in animals, but the relevance in humans is questionable.

Most studies involving gasoline have shown that gasoline does not cause genetic mutation, including all recent studies in living human subjects (such as in petrol service station attendants).

Animal studies show concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus. Prolonged contact with petroleum may result in skin inflammation and make the skin more sensitive to irritation and penetration by other materials.

SUCCINIC ACID

Substance has been investigated as a mutagen by DNA inhibition in human fibroblasts.

For acid mists, aerosols, vapours

into a highly reactive hydroperoxide by contact with air.

Test results suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airway from direct exposure to inhaled acidic mists (which also protects the stomach lining from the hydrochloric acid secreted there). The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

No evidence of a sensitization response was observed in the Gum roins key study, a guideline Local Lymph Node Assay conducted in mice, or in ten supporting studies conducted in guinea pigs according to the GPMT or Buehler methods. Gum Rosin is not classified for dermal sensitization according to the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Gum Rosin is currently classified for Skin Sensitization according to Annex I to Directive 67/548/EEC as R43: May cause sensitization by skin contact. Gum Rosin is also classified according to EU Classification, Labelling and Packaging of Substances and Mixtures (CLP) Regulation (EC) No. 1272/2008. As part of the harmonized translation between Directive 67/548/EEC and EU CLP Regulation (EC) No. 1272/2008, Table 3.1 of EU CLP Regulation (EC) No. 1272/2008 classifies Gum Rosin as "Skin Sensitizer Category 1" and assigns the hazard statement H317: May cause an allergic skin reaction. Table 3.2 of EU CLP Regulation (EC) No. 1272/2008 contains a list of harmonized classifications and labelling of hazardous substances from Annex I to Directive 67/548/EEC. Gum Rosin is assigned the risk phrase R43: May cause sensitization by skin contact in Table 3.2

Subsequent evaluation determined that the single positive study for Gum Rosin was actually conducted with an oxidized form of the test material. Several esters of Rosin have been tested using similar protocols with similar results. When the Rosin esters were heated beyond the specified protocol, the oxidized material caused a positive sensitization response. When those same esters were retested using a different protocol which did not cause oxidation, all sensitization responses were negative. While the oxidized form of Gum Rosin should be considered a skin sensitizer, the recommendation is made to declassify non-oxidized Gum Rosin (CAS # 8050-09-7).

Different rosin types are used interchangeably and are often chemically modified.. Colophony (rosin) is the nonvolatile fraction of the exudates from coniferous trees, and its main constituent is abietic acid. Abietic acid has been described as the allergenic constituent. Because it is not an electrophile, its sensitizing capacity was questioned when investigations regarding the allergenic properties of colophony started many years ago. It was found that highly purified abietic acid is nonallergenic but rapidly autooxidises forming a hydroperoxide which subsequently was identified as a major allergen of colophony. A variety of other oxidation products from abietic acid and dehydroabietic acid (the other major resin acid in colophony) were isolated and identified, some of which were shown to be sensitizers in guinea pig studies. Clinical investigations have shown that patch testing with the hydroperoxide detects about 50% of the patients with contact allergy to colophony. Abietic acid, a rosin acid, is converted

Unmodified colophony is a complex mixture of diterpenoid acids (i.e., resin acids, ca. 90%), diterpene alcohols, aldehydes, and hydrocarbons To cause sensitization, a chemical must bind to macromolecules (proteins) in the skin (producing so-called haptenation).

Hydroperoxy resin acids are dermal sensitizers, with haptenation thought to occur via radical mechanisms. Conjugation of L-lysine to the resin is predicted, with a Schiff base (or imine) linkage formed between the C-7 of the resin and the free amino group of lysine. Resin acids accumulate in the plasma membrane, a non-aqueous environment apparently conducive to conjugation of hydroperoxy resin acids with lysine side chains of membrane proteins, through covalent binding. Such binding might lead to interaction with immune cells having resin acid specificity. The haptenation mechanism may be involved in allergic contact dermatitis and occupational asthma observed from exposure to resin acid solids and aerosols.

For a better understanding of the mechanisms of contact allergic reactions, the patterns of cross-reactivity between different resin acid oxidation products were studied. The 13,14(alpha)-epoxide and the 13,14(beta)-epoxide of abietic acid and 15-hydroperoxydehydroabietic acid (15-HPDA) were shown in experimental sensitization studies to be contact allergens. Cross-reactivity was observed between the alpha- and beta-epoxides and also between the epoxides and the previously identified rosin

ROSIN-COLOPHONY

Page 14 of 19 No Clean Liquid Flux Dispensing Pen

Issue Date: **08/08/2023**Print Date: **08/08/2023**

allergen 15-hydroperoxyabietic acid (15-HPA). This indicates that 15-HPA may form an epoxide which then reacts with skin protein to generate the complete antigen. 15-HPA and 15-HPDA cross-reacted as well. This can be explained by the formation of similar alkoxy radicals from both hydroperoxides which further react with skin protein. Cross-reactivity patterns of the resin acid oxidation products indicate that 15-HPA may react with skin proteins either as a radical or as an epoxide, thus generating different antigens. The presence in rosin of the epoxides of abietic acid was also studied. The beta-epoxide was detected in gum rosin. Moreover, the epoxides elicited reactions in rosin-allergic individuals. Thus, the 13,14(beta)-epoxide of abietic acid was identified as a new, important rosin allergen.

ISOPROPANOL & SUCCINIC ACID

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	~

Legend: X − Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 Ecological information

Toxicity

Version No: 2.1

No Clean Liquid Flux Dispensing Pen	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	>1000mg/l	1
:	EC50	48h	Crustacea	7550mg/l	4
isopropanol	EC50	96h	Algae or other aquatic plants	>1000mg/l	1
	LC50	96h	Fish	>1400mg/l	4
	EC50(ECx)	24h	Algae or other aquatic plants	0.011mg/L	4
	Endpoint	Test Duration (hr)	Species	Value	Source
aphtha petroleum, heavy alkylate	EC50	72h Algae or other aquatic p		13mg/l	1
aikyiate	NOEC(ECx)	72h	Algae or other aquatic plants	0.1mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	40.7mg/l	2
succinic acid	EC50	48h	Crustacea	63mg/l	2
	LC50	96h	Fish	>100mg/l	2
	NOEC(ECx)	48h	Crustacea	23mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	>10<20mg/l	2
	EC50	48h	Crustacea	4.5mg/l	1
rosin-colophony	EC50	96h	Algae or other aquatic plants	0.031mg/l	2
	EC0(ECx)	48h	Crustacea	2.15mg/l	1
	LC50	96h	Fish	1.5mg/l	2

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity

Page 15 of 19

No Clean Liquid Flux Dispensing Pen

Issue Date: 08/08/2023 Print Date: 08/08/2023

4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) -Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

For Isopropanol (IPA): log Kow: -0.16- 0.28; Half-life (hr) air: 33-84:

Version No: 2.1

Half-life (hr) H2O surface water: 130: Henry's atm m3 /mol: 8.07E-06;

BOD 5: 1.19,60%; COD: 1.61-2.30, 97%;

ThOD: 24: BOD 20: >70%

Environmental Fate: IPA is expected to partition primarily to the aquatic compartment (77.7%) with the remainder to the air (22.3%). Overall, IPA presents a low potential hazard to aquatic or terrestrial biota.

Aquatic Fate: IPA has been shown to biodegrade rapidly in aerobic, aqueous biodegradation tests and therefore, would not be expected to persist in aquatic habitats. IPA is expected to volatilize slowly from water. The calculated half-life for the volatilization from surface water (1 meter depth) is predicted to range from 4 days (from a river) to 31 days (from a lake). Hydrolysis is not considered a significant degradation process for IPA, however; aerobic biodegradation of IPA has been shown to occur rapidly under non-acclimated conditions. IPA is readily biodegradable in both freshwater and saltwater (72 to 78% biodegradation in 20 davs).

Terrestrial Fate: Soil - IPA is also not expected to persist in surface soils due to rapid evaporation to the air. IPA will evaporate quickly from soil and is not expected to partition to the soil however; IPA has the potential to leach through the soil due to its low soil adsorption. Plants - Toxicity of IPA to plants is expected to be low. Atmospheric Fate: IPA is subject to oxidation predominantly by hydroxy radical attack. The atmospheric half-life is expected to be 10 to 25 hours. Direct photolysis is not expected to be an important transformation process for the degradation of IPA.

Ecotoxicity: IPA has been shown to have a low order of acute aquatic toxicity and is not acutely toxic to fish and invertebrates. Chronic aquatic toxicity has also been shown to be of low concern and bioconcentration in aquatic organisms is not expected to occur.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)
succinic acid	LOW	LOW
rosin-colophony	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation	
isopropanol	LOW (LogKOW = 0.05)	
succinic acid	LOW (LogKOW = -0.59)	
rosin-colophony	HIGH (LogKOW = 6.4607)	

Mobility in soil

Ingredient	Mobility
isopropanol	HIGH (KOC = 1.06)
succinic acid	LOW (KOC = 6.314)
rosin-colophony	LOW (KOC = 21990)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging

disposal

- Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ▶ Reuse
- ▶ Recycling

► Disposal (if all else fails)

Version No: 2.1

Page **16** of **19**

No Clean Liquid Flux Dispensing Pen

Issue Date: **08/08/2023**Print Date: **08/08/2023**

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous.

DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility.

Burning the hazardous substance must happen under controlled conditions with no person or place exposed to

- (1) a blast overpressure of more than 9 kPa; or
- (2) an unsafe level of heat radiation.

The disposed hazardous substance must not come into contact with class 1 or 5 substances.

SECTION 14 Transport information

Labels Required

Marine Pollutant

NO

HAZCHEM

•3YE

Land transport (ADG)

UN number or ID number	1993			
UN proper shipping name	FLAMMABLE LIQUID	FLAMMABLE LIQUID, N.O.S. (contains isopropanol)		
Transport hazard class(es)	Class 3 Subsidiary risk N	Not Applicable		
Packing group	II .			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions 274 Limited quantity 1 L			

Land transport (UN)

UN number or ID number	1993		
UN proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains isopropanol)		
Transport hazard class(es)	Class Subsidiary risk	Not Applicable	
Packing group	II .		
Environmental hazard	Not Applicable		

Version No: 2.1

No Clean Liquid Flux Dispensing Pen

Issue Date: **08/08/2023**Print Date: **08/08/2023**

Special precautions for	Special provisions 27		
user	Limited quantity	1 L	

Air transport (ICAO-IATA / DGR)

UN number	1993		
UN proper shipping name	Flammable liquid, n.o.s.	* (contains isopropanol)	
	ICAO/IATA Class	3	
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable	
	ERG Code	3H	
Packing group	II		
Environmental hazard	Not Applicable		
	Special provisions		АЗ
	Cargo Only Packing Instructions		364
	Cargo Only Maximum	Qty / Pack	60 L
Special precautions for user	Passenger and Cargo	Packing Instructions	353
usei	Passenger and Cargo Maximum Qty / Pack		5 L
	Passenger and Cargo	Limited Quantity Packing Instructions	Y341
	Passenger and Cargo Limited Maximum Qty / Pack		1 L

Sea transport (IMDG-Code / GGVSee)

UN number	1993		
UN proper shipping name	FLAMMABLE LIQUI	ID, N.O.S. (contains isopropanol)	
Transport hazard class(es)		Not Applicable	
Packing group	II		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number Special provisions Limited Quantities		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
isopropanol	Not Available
naphtha petroleum, heavy alkylate	Not Available
succinic acid	Not Available
rosin-colophony	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
isopropanol	Not Available
naphtha petroleum, heavy alkylate	Not Available
succinic acid	Not Available
rosin-colophony	Not Available

Part Number: Version No: **2.1** Issue Date: **08/08/2023**Print Date: **08/08/2023**

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR002528	Cleaning Products Flammable Group Standard 2020
HSR002495	Additives Process Chemicals and Raw Materials Flammable Group Standard 2020
HSR002662	Surface Coatings and Colourants Flammable Group Standard 2020
HSR002611	Metal Industry Products Flammable Group Standard 2020
HSR002621	N.O.S. Flammable Group Standard 2020
HSR002637	Photographic Chemicals Flammable Group Standard 2020
HSR002641	Polymers Flammable Group Standard 2020
HSR002650	Solvents Flammable Group Standard 2020
HSR100425	Pharmaceutical Active Ingredients Group Standard 2020
HSR002599	Leather and Textile Products Flammable Group Standard 2020
HSR002603	Lubricants Flammable Group Standard 2020
HSR002548	Corrosion Inhibitors Flammable Group Standard 2020
HSR002552	Cosmetic Products Group Standard 2020
HSR002556	Dental Products Flammable Group Standard 2020
HSR002563	Embalming Products Flammable Group Standard 2020
HSR002576	Food Additives and Fragrance Materials Flammable Group Standard 2020
HSR002583	Fuel Additives Flammable Group Standard 2020
HSR100757	Veterinary Medicines Limited Pack Size Finished Dose Group Standard 2020
HSR100758	Veterinary Medicines Non dispersive Closed System Application Group Standard 2020
HSR100759	Veterinary Medicines Non dispersive Open System Application Group Standard 2020

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

isopropanol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act-Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act -

Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

naphtha petroleum, heavy alkylate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

New Zealand Inventory of Chemicals (NZIoC)

succinic acid is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

rosin-colophony is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Hazardous Substances and New Organisms (HSNO) Act -Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Chemwatch: **16-86124** Page **19** of **19**

Part Number: Version No: **2.1**

No Clean Liquid Flux Dispensing Pen

Issue Date: **08/08/2023**Print Date: **08/08/2023**

Hazard Class	Quantity (Closed Containers)	Quantity (Open Containers)
3.1B	100 L in containers more than 5 L	50 L
3.1B	250 L in containers up to and including 5 L	50 L

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
6.5A or 6.5B	120	1	3	
3.1B				1 L

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (isopropanol; naphtha petroleum, heavy alkylate; succinic acid; rosin-colophony)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (naphtha petroleum, heavy alkylate; rosin-colophony)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	No (naphtha petroleum, heavy alkylate)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	08/08/2023
Initial Date	08/08/2023

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.